Quantum Mechanics

The hidden world of the electron

Ground state

- If all the electrons within an atom are at the lowest possible energy levels and orbitals, the atom is said to be in its *ground state*
- this is the most stable electron configuration of the atom
- Aufbau Principle: "fill in the orbitals from the ground up"

Hund's Rule

- When filling an orbital set with electrons, always put one electron in each orbital in the set before placing the second electron into an orbital in the set
- Ex: each of the three p orbitals in a set of p's will get one electron before any of them get two

Orbital energy diagram

 In the hydrogen atom, all the orbitals at the same Energy level are equal in energy

-The orbitals are "degenerate"

 This is why the Bohr model works with Hydrogen

Orbital energy diagram

- In all other atoms, there is "orbital energy overlap" between the highest energy orbitals at one level, and the lowest energy orbitals at the next level
- ex: the 4s orbital is lower in energy than the 3d orbitals, so it fills with electrons first

Pauli exclusion principle

- No two electrons within the atom can have exactly the same energy
- Each individual orbital can contain at most two electrons

-they must have "opposite spin"

Ground state

- If all the electrons within an atom are at the lowest possible energy levels and orbitals, the atom is said to be in its *ground state*
- this is the most stable electron configuration of the atom
- Aufbau Principle: "fill in the orbitals from the ground up"

Hund's Rule

- When filling an orbital set with electrons, always put one electron in each orbital in the set before placing the second electron into an orbital in the set
- Ex: each of the three p orbitals in a set of p's will get one electron before any of them get two

Aufbau order of filling

Order of filling 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p

Periodic table structure

- The actual structure of the periodic table reflects our current theory of quantum mechanics and atomic structure
- atoms of like structure are arranges into "blocks"

Periodic table structure

- For the s and p block elements:
 - The <u>energy level</u> is the <u>same</u> as the <u>period</u> on the periodic table

Periodic table structure

 due to orbital energy overlap, the d block is one energy level lower than the period it is in, and the f orbital block is two energy levels lower than the period it is in.

- Shorthand method of indicating where the electrons are in an atom
- Follows the order of filling, but removes the necessity of drawing out the orbital energy diagram

- H 1 electron
- 1s¹
- He 2 electrons
- 1s²
- Li 3 electrons
- 1s² 2s¹

- Be 4 electrons
- $1s^2 2s^2$
- B 5 electrons
- 1s² 2s² 2p¹
- C 6 electrons
- $1s^2 2s^2 2p^2$

- N 7 electrons
- $1s^2 2s^2 2p^3$
- O 8 electrons
- 1s² 2s² 2p⁴
- F 9 electrons
- 1s² 2s² 2p⁵

- Ne 10 electrons
- $1s^2 2s^2 2p^6$
- Na 11 electrons
- 1s² 2s² 2p⁶ 3s¹
- Mg 12 electrons
- $1s^2 2s^2 2p^6 3s^2$

- What about the transition metals?
- All are filling the d orbitals, which means there is some orbital energy overlap
- ns²(n-1)d^x

- Examples:
- Sc 21 electrons
- 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹
- Fe 26 electrons
- $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$

- Zn 30 electrons
 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰
- Ga 31 electrons
- $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^1$
- Kr 36 electrons
- 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶

Shell or kernel notation

- Notice: the order of filling "starts over" after each noble gas
- example: Kr
 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶
- now, consider Rb, with one more electron:
 - 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹

Shell or kernel notation

 Because the configuration for Rb is basically the same as Kr, with one additional electron added, there is a "shorthand" notation

 \odot 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s¹ \odot [Kr]5s¹

Shell or kernel notation

Table 5.5	Electron Configurations for Elements 11–18							
Element	Atomic Number	Complete Electron Configuration	Electron Configuration Using Noble Gas					
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹	[Ne]3s ¹					
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²	[Ne]3s ²					
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹	[Ne]3s ² 3p ¹					
Silicon	14	1s ² 2s ² 2p ⁶ 3s ² 3p ²	[Ne]3s ² 3p ²					
Phosphorus	15	1s ² 2s ² 2p ⁶ 3s ² 3p ³	[Ne]3s ² 3p ³					
Sulfur	16	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne]3s ² 3p ⁴					
Chlorine	17	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	[Ne]3s ² 3p ⁵					
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	[Ne]3s ² 3p ⁶ or [Ar]					

Which electrons "matter" the most?

- All types of chemical bonds involve electrons
- Valence electrons, the electrons in the *outermost occupied <u>energy</u>* <u>level</u> of an atom, are usually the electrons involved in bonding

 The representative elements have the same number of valence electrons as their family number in the American system

-Example: Mg, column 2A, 2 valence electrons The transition metals all have two valence electrons

 $ns^2(n-1)d^x$

How many valence electrons?

- Zn 30 electrons
- $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$
- Ga 31 electrons
- $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^1$
- Kr 36 electrons
- 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶

- Lewis dot structures are used to represent the valence electrons
 - –each dot represents a valence electron
 - -no more than 8 dots total
 - -no more than 2 dots on a side
 - -example = Mg: Na

Think about it...

- What would be true about the dot structure for any atom in the same group or family

 Ex: any halogen? Any group 5B element?
- Every element in the same vertical column would be expected to have the identical dot structure.
 - Ex: all group 5A elements have 5 valence electrons, and have 5 dots

Lewis dot structures of representative elements

1								18
H.	2		13	14	15	16	17	He:
Li	Be		·B·	.ċ.	·Ņ:	.ö:	:F:	:Ne:
Na [.]	Mg [.]		۰Åŀ	۰. Si.	٠P:	.;:	:Ċİ:	:Är:
K.	Ċa [.]	_ /	.Ġa∙	•Ġe'	.Ås:	 .Se:	:Br:	:Kr:
Rb [.]	Śr [.]		۰. in	۰Śņ۰	۰Sþ:	۰. Te:	:i:	:Xe:
Cs.	Ba		۰it.	·Pb.	· Bị:			:Rn:
	1 H. Li [.] Na [.] K [.] Rb [.]	1H.2Li'Be'Na'Mg'K'Ca'Rb'Sr'Cs'Ba'	1H.2Li'Be'Na'Mg'K'Ca'Rb'Sr'Cs'Ba'	1H.213Li' $\dot{Be'}$ $.\dot{B'}$ Na' $\dot{Mg'}$ $.\dot{Al'}$ K' $\dot{Ca'}$ $.\dot{Ga'}$ Rb' $\dot{Sr'}$ $.\dot{In'}$ Cs' $\dot{Ba'}$ $.\dot{Tl'}$	1 H. 2 13 14 Li* Be* .B* .C* Na* Mg* .AI* .S* K* Ca* .Ga* .G* Rb* S* .in* .S* Cs* Ba* .TI* .P*	1 H. 2 13 14 15 Li* Be* ·B* ·C· ·N· Na* Mg* ·AI* ·Si* ·P· K* Ca* ·Ga* ·Ge* ·A·s* Rb* Sr* ·In* ·Si* ·Si* Cs* Ba* · ·TI* ·Pb* ·Bi*	1 H. 2 13 14 15 16 Li* Be* .B* .C* .N* .Ö* Na* Mg* .AI* .S* .P* .S* K* Ca* .Ga* .Ge* .As* .S* Rb* S* .in* .S* .S* .T* Cs* Ba* .TI* .P* .Bi* .P*	1 H· 2 13 14 15 16 17 Li· Be· ·B· ·C· ·N· ·O· :F· Na· Mg· ·A· ·S· ·P· ·S· :C· K· Ca· · ·da· ·de· ·A· ·S· :S· :C· Rb· Śr· · · · ·· ·· ·· ·· ·· ·· Cs· Ba· · · · ··

The Octet Rule

- In bonding situations, atoms of representative elements will tend to gain, lose, or share electrons until they achieve an ns²np⁶ valence configuration
- This results in 8 valence electrons
- The noble gases start with 8 valence electrons

Electron Configuration of Ions

 $Na \Rightarrow 1s^22s^22p^63s^1$

will tend to lose it's one valence e- to gain ns²np⁶ configuration

$$\gg$$
Na⁺ \Rightarrow 1s²2s²2p⁶

 $S{\Longrightarrow}~1s^22s^22p^63s^23p^4$

- will tend to gain 2 e- to gain ns²np⁶ configuration
- $ightarrow S^{2-} \Rightarrow 1s^22s^22p^63s^23p^6$

Electrons and magnetism

- Electrons behave like tiny magnets
 - Any moving electric charge induces a magnetic field
- Paired electrons, with opposite spins, "cancel out" each other
- Unpaired electrons can lead to observable magnetic properties

paramagnetic

- A substance that is attracted to a magnetic field
- The result of <u>unpaired electrons</u>
 Na: [Ne]3s¹ 3s <u>↑</u>
 - O: $1s^22s^22p^4$ $2s\uparrow\downarrow$ $2p\uparrow\downarrow\uparrow$ \uparrow

Fe: [Ar]4s²3d⁶ 4s $\uparrow\downarrow$ 3d $\uparrow\downarrow\uparrow$ \uparrow \uparrow \uparrow

diamagnetic

- A substance that is not attracted to a magnetic field
- All electrons are paired
- Opposite spins cancel out each electron's magnetic field
- Zn: [Ar]4s²3d¹⁰ 4s $\uparrow\downarrow$ 3d $\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow$

Electron Configuration - excited state

$Na \Rightarrow 1s^22s^22p^63s^1$

 If it absorbs energy, one or more electrons will be promoted to a <u>higher</u>, <u>unoccupied</u> orbital

Ex: Na \Rightarrow 1s²2s¹2p⁶3s¹3p¹

You can spot the configuration for an excited state atom by noticing **unfilled orbital sets** at **lower energy levels**

Inner transition elements

- All place one electron in a "d" orbital before beginning to fill the "f" orbitals
- This is <u>only true for elements in the f-block</u>
- All other elements follow the 6s 4f -5d or 7s - 5f - 6d order of filling as expected

Inner transition exception examples

- Ba [Xe] 6s²
- La [Xe] 6s² 5d¹
- Ce [Xe] 6s² 5d¹ 4f¹
- Lu [Xe] 6s² 5d¹ 4f¹⁴
- Hf [Xe] $6s^2 4f^{14} 5d^2$